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Abstract
We study the spectral and transport properties of magnons in a model of a
disordered magnet called Mattis glass, at vanishing average magnetization.
We find that in two-dimensional space, the magnons are localized with the
localization length which diverges as a power of frequency at small frequencies.
In three-dimensional space, the long wavelength magnons are delocalized. In
the delocalized regime in 3d (and also in 2d in a box whose size is smaller
than the relevant localization length scale) the magnons move diffusively. The
diffusion constant diverges at small frequencies. However, the divergence is
slow enough so that the thermal conductivity of a Mattis glass is finite, and we
evaluate it in this paper. This situation can be contrasted with that of phonons
in structural glasses whose contribution to thermal conductivity is known to
diverge (when inelastic scattering is neglected).

PACS numbers: 05.40.−a, 05.60.−k, 75.30.Ds

1. Introduction

For two reasons, the study of low energy excitations in spin glasses—spin glass magnons—
is met with notorious difficulties: first, the energetic frustration characteristic for glasses
implies the existence of many nearly degenerate minima, i.e. the conceptual status of ‘small’
fluctuations forming on top of any one of those configurations remains somewhat dubious.
Second, even if a sufficiently inert extremal configuration was known, the solution of the
appropriately linearized problem would still pose a highly nontrivial problem.

To get the problem at least partially under control, magnons in spin glasses are commonly
described in the language of mean field theory [1, 2]. Within this approach one finds
that the dispersion of the excitations forming on top of a background of vanishing average
magnetization

ω(p) ∝ |p|, (1)
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is linear in analogy to the spinwave dispersion of antiferromagnets. Here, ω and p denote
frequency and wave vector of the excitations, respectively. Mean field theory further predicts
that magnons in a glass with nonzero average magnetization m have a ferromagnet-like branch
of excitations,

ω(p) ∝ p2. (2)

However, in view of the difficulties alluded to above, there is no reason a priori why mean
field theory qualifies to describe spin glasses at all. For example, it has been known for more
than a decade that mean field theory breaks down below the critical dimension dc = 2 (see
[3–5]). (Yet above the critical dimension arguments can be given which support the mean
field theory results equations (1) and (2) for the excitation spectrum.)

Furthermore, an important question which mean field theory completely fails to address
is the transport properties of magnons: while excitations in conventional magnetic materials
propagate ballistically, the disorder inherent to spin glasses renders the dynamics of magnons
diffusive and, eventually, leads to mechanisms of localization. Clearly, these phenomena
cannot be described in terms of a spatially uniform mean field4.

It is the main objective of the present paper to introduce an alternative approach to the
problem which is not burdened by these limitations. Developed in close analogy to the
field theory approach to electron dynamics in disordered solids, the formalism below can be
employed to address both spectral and localization properties of magnons. On the other hand,
it has nothing to say about the first problem mentioned above, identification and analysis of
reference ground states. For this reason, we chose to introduce the approach on a prototypical
variant of a spin glass, the so-called Mattis glass, for which this problem simply does not exist.

To prepare the definition of the Mattis glass, let us recall that spin glasses [7] are usually
described by the exchange Hamiltonian

H = −1

2

∑
ijα

Jij S
α
i Sα

j , (3)

where i, j refer to nearest-neighbour sites on some lattice, Jij are random exchange constants
and Ŝα, α = 1, 2, 3 is a vector representing the spin. (In this paper we assume that |S| ≡ S � 1
is sufficiently large so that the spin system can be treated as classical.) The spin equations of
motion are then given by,

∂S

∂t
= [H, S],

[
Sα

j , S
β

k

] = iδjk

∑
γ

εαβγ S
γ

k , (4)

where εαβγ is the usual antisymmetric tensor.
As mentioned above, one of the major difficulties hampering analytical progress on the

problem posed by (4) is that the ground state(s) of the Hamiltonian are not known. For this
reason, we consider here a simplified variant of (3), the so-called Mattis glass. The Mattis
glass is defined by,

H = −J

S

∑
jkα

ξj ξkS
α
j Sα

k , (5)

i.e. a spin-glass Hamiltonian for which the exchange constants Jjk ∼ ξj ξk factorize. Here,
J is a constant parameter setting the energy units, j, k are nearest-neighbour sites of a
d-dimensional lattice, and ξj are bimodally distributed random variables taking value 1 with

4 Mean field theory becomes exact for spin glasses with infinite range interactions. In that case, one finds [6] that
the frequency dependent density of magnon modes (for a precise definition of this quantity, see equation (7) below)
scales as ρ(ω) ∼ ω3/2. However, this power-law is at variance with the behaviour observed for ‘real’ spin glasses.
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probability p and −1 with probability 1−p. This factorization entails that a degenerate family
of spin configurations minimizing the Hamiltonian can readily be written down:

S
α(0)
i = S sign (ξi) nα, (6)

where n is a unit vector with arbitrary direction (due to rotational invariance of equation (5).
Thus the Mattis glass is a model with a disordered ground state but without the frustration
inherent to usual spin systems. To understand the physical features of Mattis glass magnons
we need to explore the equations of motion (4), linearized around (6). (Under the presumed
condition S � 1 anharmonic fluctuations, i.e. magnon interactions can safely be neglected.)
We emphasize that this part of the analysis is of similar complexity to the study of magnons
in ‘real’ spin glasses.

The first to study magnon propagation in the Mattis glass was David Sherrington. In a
series of papers [8] he found the spectral density of magnons in the Mattis glass and their
scattering length. Additionally, [3] is an important work studying magnons in a 1D Mattis
glass. It has to be mentioned that any random one-dimensional spin chain with nearest-
neighbour interaction is automatically a Mattis glass, and since in 1D the scattering length
coincides with the localization length all the transport properties of Mattis magnons in 1D are
known [3, 8]. Because of that, in this paper we will concentrate on dimensionalities higher
than one. Before turning to the methodological aspects of the analysis, let us summarize our
main results and relate them to earlier work on similar problems.

Summary of results. In this paper we will characterize the behaviour of magnons in terms
of their dispersion relation ω(p), the frequency dependent localization length, l(ω) and the
so-called density of frequencies

ρ(ω) = 1

N

N∑
n=1

δ(ω − ωn), (7)

where ωn are the frequencies of the magnon modes and N is the total number of modes in
the glass. Borrowing terminology from the physics of disordered electron systems, we will
henceforth refer to ρ(ω) as the density of states (DoS). In a way to be formulated precisely
below, the localization length, l(ω), is a measure for the exponential decay of magnon modes
at frequency ω. As measurable observables related to these quantities we will consider the
thermal conductance of the glass and its specific heat.

We first note (see the discussion in the end of the next section) that if the average
magnetization of a Mattis glass is nonzero, the behaviour of its magnons at very low frequencies
closely resembles that of phonons in a structural glass. Since phonons in structural glasses
have already been discussed in [9], in this paper we concentrate mostly on the Mattis glass
with zero average magnetization, or with p = 1/2. In some instances below where we do
consider p �= 1/2, this will be explicitly stated.

For the dispersion relation of the un-magnetized Mattis glass we find

Re ω ∝ p, Im ω ∝ p2 in 3d,

Re ω ∝ p√
log

(


p

) , Im ω ∝ p

log
(



p

) 3
2
, in 2d. (8)

Here, 
 is a momentum cutoff, reciprocal to the minimal wavelength of magnons.
This result is consistent with the discussion in references [5] and [4] where it is argued

that Im ω ∝ pd−1 above the critical dimension d > dc = 2. This behaviour can be contrasted
with the behaviour of phonons in structural glasses whose dispersion relation is

Re ω ∝ p, Im ω ∝ pd+1. (9)
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Equation (9) is often interpreted as a manifestation of Raleigh scattering. A closely related
formula also holds for glasses with nonzero average magnetization M. It reads

Re ω ∝ p2, Im ω ∝ pd+2. (10)

Its relation with to equation (9) will be discussed at the end of this paper.
In [8] self consistent diagrammatic methods were applied to derive the DoS

ρ(ω) ∝ ω|log(ω)| in 2d,

ρ(ω) ∝ ω2 in 3d.
(11)

Our field theoretical analysis below will confirm this result. Also notice that equations (11)
coincide with the DoS deduced from mean field theory equation (1) (up to a logarithmic
prefactor in 2d).

The central result of this paper regards the localization properties of magnons. We find
that in 2d magnons are localized on the frequency dependent scale

l(ω) ∝ ω− 1
16π . (12)

(In contrast, phonons in structural glasses or, equivalently, magnons in Mattis glass with
nonzero M, are subject to a weaker localization mechanism leading to an exponentially
diverging localization length [9].) At length scales below the localization length the magnons
move diffusively. In the 3d case we find that the dynamics is diffusive no matter how small
the frequency, i.e. there is no localization.

In both 2d and 3d, the diffusion constant diverges as the frequency of magnons goes to
zero:

D(ω) ∝ 1

ωd−1
. (13)

(Compare this with D(ω) ∝ ω−d−1 for structural glasses [9]). Dispersive observables such
as the thermal conductivity are related to the product of diffusion constant and density of
states, ρ(ω)D(ω) (weighted by the specific heat, C(ω), and integrated over frequency.) A
glance at equation (11) shows that this quantity is an integrable function at small ω. As an
important consequence, we find that, independent of dimensionality, the thermal conductivity
of magnons in a Mattis glass is finite. Specifically, for 2d,

κ = k2T

12h̄
log

(
4π
2J 2

αk2T 2

)
. (14)

Here α measures the correlation volume of spins (often α ∝ 
−d for short range correlated
spins). Note that the conductivity is only weakly disorder dependent. This is a consequence of
the fact that the diffusion constant/DoS scales linearly/inversely linear with the disorder
strength. (Similar behaviour is observed, e.g., for quasiparticles in high temperature
superconductors [10].)

In 3d, the thermal conductivity is given by the fully disorder-independent result,

κ = 


9π

k2T

h̄
. (15)

Owing to the absence of localization, the thermal conductance is obtained from (15) by a
trivial multiplication by the system size: Ohm’s law.

In this paper we also discuss the Mattis glass with nonzero magnetization. The magnon’s
low frequency behaviour is closely related to that of phonons in a glass. Thus the density
of states is ρ(ω) ∝ ω

d−2
2 , in agreement with equation (2). The thermal conductivity

is infinite because of the weak scattering at small frequencies, as can be seen from the
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frequency dependent diffusion constant D(ω) ∝ 1/ω
d
2 . Finally, at frequencies higher than a

certain frequency ωc, the magnons’ behaviour crosses over to that of a glass with vanishing
magnetization. In 2d, ωc = JM/α, where J is the spin–spin interaction constant multiplied
by the square of the lattice constant and α is the correlation volume of spins, see below. In
3d, ωc = JM/(α
), where 
 is the inverse lattice spacing.

This concludes our preliminary summary of results. The rest of the paper is organized as
follows. In the next section we derive the magnon equations of motion for Mattis glass. We
then formulate the field theory approach (section 3) and use it to discuss magnon localization
and transport properties in 2d and 3d (section 4).

2. The equations of motion

The most straightforward way to introduce magnons on a technical level is by the Holstein–
Primakoff transformation [8]. For those spins Sj with ξj > 0, we write, in the harmonic
approximation (site indices suppressed for notational transparency),

Sz = S − a†a, S+ ≈ a
√

2S, S− ≈ a†√2S, (16)

while for those whose ξj < 0 we write

Sz = −S + a†a, S+ ≈ a†√2S, S− ≈ a
√

2S, (17)

where a, a† are Holstein–Primakoff bosons. Substituting in equation (5) and expanding to
second order in a, a†, one obtains the quadratic Hamiltonian [8]

δH = J

2

N∑
jk=1

(
a
†
j aj

) (
hjk jk

jk hjk

) (
ak

a
†
k

)
≡ J

2
ψ †Hψ, (18)

where

H =
(

h 

 h

)
, ψ =

(
a

a†

)
, (19)

and h and  are N × N symmetric matrices defined in the following way

hjj = 2d, hj,j+µ = − 1
2 (1 + ξj ξj+µ), j,j+µ = 1

2 (1 − ξj ξj+µ). (20)

Here j + µ refer to the nearest-neighbour sites of the site j . As discussed in [11], the magnon
equation of motion then takes the form

Hψ = ω

(
11N 0
0 −11N

)
ψ, (21)

where 11N is the N-dimensional identity matrix. To proceed, it is convenient to perform a
unitary rotation

H − ω

(
11N 0
0 −11N

)
→ U †

(
H − ω

(
11N 0
0 −11N

))
U, ψ → U †ψ (22)

where the unitary matrix U is defined as

U = 1

2

(
� − 11N −� − 11N

� + 11N 11N − �

)
, (23)

and �jk = δjkξk . As a result, equation (21) assumes the block-diagonal form

J

2

(
h −  0

0 h − 

)
ψ = ω

( −� 0
0 �

)
ψ, (24)
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where the disorder-independent combination h −  is but the d-dimensional lattice Laplacian
�jk . (As a side remark we mention that the unitary equivalence H ∼ −� > 0 states the
positivity of the operator H—for a bosonic problem, a necessary stability condition.) Thus
we find

− J

2

∑
k

�jkψk = ±ωξjψj . (25)

Here the two signs refer to the upper/lower half of the vector ψ . Physically, they correspond
to two magnon branches of opposite frequency. In the context of Mattis glass equation (25)
first appeared in [3]. As a last step, we take the continuum limit of this equation. Trading the
discrete index j for a continuous coordinate x, we arrive at5

− J

2
�ψ = ±ωξ(x)ψ, (26)

where � is the continuum Laplacian and the discrete random variable ξj was replaced by a
function ξ(x), randomly taking values +1 or −1 with probabilities p and 1 − p at different
points in space.

As it is hard to deal with bimodally distributed variables, we are going to replace ξ(x)

according to ξ → M + V (x), where M is the average magnetization per spin M = 2p − 1 and
V (x) is a random Gaussian variable with zero mean and correlation

〈V (x)V (y)〉 = αδ(x − y). (27)

Remembering the definition of V as a continuous version of the variables ξk , we deduce that
the parameter α has the meaning of the correlation volume of spins in the Mattis glass. (For
uncorrelated spins, α is of the order of the elementary lattice volume.)

In view of the universality of extended random systems with respect to changes in the
microscopic realization of the disorder, we trust that taking a continuum limit and modelling
the randomness according to (27) are permissible simplifications. At any rate, the final form
of the equations of motion on which our further analysis will be based reads as(

J

2
� + ωM + ωV (x)

)
ψ = 0, (28)

where we have suppressed the ± sign in front of the frequency.
Structurally, equation (28) bears a resemblance to the Schrödinger equation of a quantum

particle in a random potential. The crucial difference is, however, that what would have been
an energy in that equation is now proportional to magnetization, and what would have been
the disorder strength is proportional to the frequency of magnons.

Equation (28) is also very similar to the main equation of [9] where phonons in structural
glasses were studied. However, what is M + V (x) in equation (28) was the mass density m(x)

in [9], and as such, it was a strictly positive quantity. In the Mattis glass, on the other hand,
M +V (x) (being a continuum analogue of the bimodal distribution ξj ∈ {−1, 1}) can and must
be negative for some values of x. Yet the methods employed in [9] required to take M + V (x)

as a random Gaussian variable centred around M ≡ 〈m(x)〉. Without discussing whether
that would invalidate any of the conclusions of [9] with respect to the structural glasses, we
immediately deduce that the properties of magnons in Mattis glasses with nonzero average
magnetization M have effectively been already derived, and [9] can be consulted to find out
how that was done. (For completeness, the main results had been summarized in the previous
section.) In what follows we concentrate on the complementary case of the Mattis glass with

5 After taking the continuum limit, J now becomes the spin–spin interaction constant times the square of the lattice
spacing.
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vanishing magnetization M = 0 (or p = 1/2), with the exception of section 4, where M �= 0
will also be considered.

3. Field theory

3.1. Green functions

All relevant information about the eigenvalue problem defined by (21) and (28) is contained
in the advanced and retarded Green functions

G± = 1

ω + J
2 V −1� ± iε

, (29)

where ε > 0 is infinitesimal and we have set the average magnetization to zero, M = 0.
An equivalent (see the appendix), but for our purposes more convenient representation of the
Green function reads as

G± =
[
ωV +

J

2
� ± iε sign ω

]−1

V. (30)

The two quantities we shall focus on in the following are

C1(ω) ≡ 〈G+(ω; x, x)〉,
C2(ω,�; |x − y|) ≡ 〈G+(ω + �/2; x, y)G−(ω − �/2; y, x)〉,

(31)

where the averaging 〈. . .〉 is over ‘disorder’ V . As usual, the average DoS can be represented
in terms of the Green functions as

ρ(ω) = − 1

π
ImC1(ω). (32)

C2(ω, p) can be used to calculate the diffusion constant of magnons. At small � � ω and
small p,

C2(ω,�; p) ≈ 4πρ(ω)

D(ω)p2 + i�
, (33)

where D(ω) is the diffusion constant of magnons at frequency ω.
The thermal conductivity of the system is then given by [9]

κ =
∫ ∞

0
dω ρ(ω)C(ω, T )D(ω), (34)

where C is the specific heat of magnons at frequency ω,

C(ω, T ) = (h̄ω)2

kT 2
(
2 sinh h̄ω

2kT

)2 . (35)

To compute the disorder average involved in the definition of the correlation functions
C1,2, we employ the field theoretical formalism of the nonlinear σ -model, an approach that
has been met with tremendous success in the field of disordered fermion physics. In fact, the
application of this field theory to ‘glassy’ problems is by no means original. In a pioneering
work, John, Sompolinsky and Stephen [9] attacked the related problem of phonon localization
in structural glasses by the same formalism. However, while at first sight the presence
(phonons) or absence (Mattis glass magnons) of the parameter M in (28) may appear to be
of minor significance, the opposite is the case. In fact, essential elements of the structure
of the theory depend on this point, which is why very different physical results are obtained
(cf the discussion above.)
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To prepare the averaging over the disorder, we consider the supersymmetric generating
functional:

Z[V ] =
∫

D� exp(−S[�̄,�]), (36)

where the action S is defined as

S = i�̄

[
J

2
� +

(
ω +

�

2
σAR

3

)
V + iεσAR

3

]
�. (37)

Here, � ≡ {�α}, α = 1, . . . , 8 is an eight-component vector field, half of whose components
are complex variables, while the remaining components are anticommuting (Grassmann
variables). Of the commuting (anticommuting) variables, one half refers to the retarded
sector of the theory, the other half to the advanced sector. The simultaneous presence of both
sectors is indicated by the presence of the Pauli matrix σ AR

3 operating in advanced–retarded
space. While our so far counting accounts for four different types of variables (commuting–
anticommuting/advanced–retarded), a further doubling of the number of integration variables
is required [12] by the time reversal invariance of the problem (technically, the fact that we
are dealing with a symmetric operator.)

Referring for a comprehensive introduction to the apparatus of supersymmetry in statistical
physics to [12] we here merely mention that the rationale behind introducing a supersymmetric
structure is that Z[V ] = 1 is automatically unit-normalized. (The operator determinants
resulting from the integration over commuting/anticommuting variables, resp., cancel each
other.) Not having to worry about determinantal prefactors, the average over the Gaussian
distribution of the disorder becomes a straightforward operation. Again referring for a detailed
discussion to [12], we here just note that a Hubbard–Stratonovich decoupling of the four-
fermion ‘interaction’ generated by the disorder averaging results in

Z ≡ 〈Z[V ]〉 =
∫

DR exp(−S[R]), (38)

where R = {Rαβ} is an eight-dimensional matrix field, whose action reads as

S[R] = 1

4αω2

∫
str(R2) +

1

2
str lnG[R]−1. (39)

Here, str is the so-called supertrace6 [12], and G is defined as

G[R]−1 = J

2
� +

(
1 +

�

2ω
σAR

3

)
R. (40)

Equation (38) represents an (admittedly complicated) representation of unity, Z = 1. To
make use of the formalism, we need to relate our correlation functions C1,2 to the generating
functional. Indeed, it is straightforward to verify that the one-point correlation function C1 is
obtained by computing the expression

C1(ω) = i〈〈S1(x)S1∗(x)〉ψV (x)〉V ,

where 〈. . .〉ψ denotes the functional average over the Gaussian action (37) and S1 refers to
the first component of the commuting sector of the field �. After the disorder average this is
equivalent to computing

C1(ω) = αω〈S1(x)S1∗(x)�̄(x)�(x)〉. (41)

6 The supertrace generalizes the standard notion of a trace of a matrix to the case of supermatrices. It is defined as
strR = ∑4

α=1 Rαα − ∑8
α=5 Rαα where α = 1, . . . , 4 and α = 5, . . . , 8 correspond to the bosonic and fermionic

components of �α .
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As for the ‘two-point’ function C2, certain care has to be exercised with the sign of the
frequency arguments: phenomena like diffusion and localization are observed in the limit of
small frequency difference |�| � ω. Assuming that the offset frequency ω > 0 is positive,
the analytic structure (cf equation (30)) of the Green function is thus determined as indicated
in (31). Accordingly, the two-point function can be represented as

C2(ω,�; |x − y|) = α2

〈
S1(x)S1∗(y)S2(y)S2∗(x)�̄(x)

(
ω +

�

2
σAR

3

)
�(x)

× �̄(y)

(
ω +

�

2
σAR

3

)
�(y)

〉
. (42)

Here S1 and S2 stand for advanced and retarded components of the commuting sectors of the
vector �.

To actually evaluate the functional expectation values (41) and (42), we need to reduce the
(exact) reformulation of the problem, equations (38) and (39), down to a better manageable
effective low energy field theory. This reduction is achieved by a gradient expansion around
the spatially uniform stationary phase configurations of the action (39). These reference states
are determined by solution of the equation

δS[R̄]
∣∣
�=0

δR̄(x)
= 0 ⇔ R̄ = αω2

(
1

2π

)d ∫
ddp

J
2 p2 − R̄

, (43)

where in the second equality p is momentum. (Owing to � � ω, the dependence of the mean
field configurations on the frequency mismatch � is weak, which is why � is neglected in
(43).)

The simplest solutions to equation (43) acquire the matrix-diagonal form

R̄ = q1 + iq2σ
AR
3 ,

where q1,2 are real parameters. The detailed form of q1,2 depends on the dimensionality of
the problem. To avoid reiterations, we therefore first outline the general (independent of
dimensionality) architecture of the theory before discussing the cases d = 1, 2, 3 separately.

In the following we will rely upon the fact that q1/q2 diverges as ω is taken to zero,
in a manner specified below by equations (57) and (67). The significance of this relation
becomes clear when we note that, physically, R̄ plays the role of a self-consistent Born
(SCBA) self-energy of the problem (in diagrammatic language, the self-energy calculated
neglecting diagrams with crossing impurity scattering lines.)

Indeed, (43) is structurally equivalent to the familiar form of the SCBA self-energy
equation. The statement q1 � q2 thus implies that the energy shift acquired by impurity
induced virtual transitions from one magnon mode into others exceeds the energy broadening,
i.e. the instability of magnons in a non-translationally invariant environment. Again alluding
to the formal analogy to the Green functions of disordered electrons, q1 ∼ EF plays the role
of the ‘Fermi energy’ of the problem, and 1/q2 ∼ τ is the analogue of the inverse fermionic
scattering time, τ . The fact that q1/q2 ∼ EF τ � 1 implies that we are working with the
analogue of a weakly disordered system. At the same time, the parameter q1/q2 � 1 stabilizes
the construction of the low energy field theory to be outlined momentarily.

3.2. Construction of a low energy action

The fact that in the limit � → 0 the action (39) is isotropic in the internal matrix space of the
theory implies that R̄ is but a single element of an entire manifold of solutions of the saddle
point equation. Indeed, any configuration

T R̄T −1 ≡ q1 + iq2T σ AR
3 T −1
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Table 1. Comparison of basic (upper part) and derived (lower part) scales of the problem. In the
fifth row, ν denotes the DoS per volume and (d) is the volume of the d-dimensional unit sphere.

Quantity Fermions Magnons

Fermi energy EF q1

Scattering time τ (2q2)
−1

Mass m J−1

Diffusion constant, D0 D0 = 2EF τ
dm

D0 = Jq1
dq2

Density of states, ν ν = (d)

(2π)d
(2mEF )

d−2
2 dm ν = (d)

(2π)d

(
2q1
J

) d−2
2 d

J

represents another solution. Here T ∈ OSp(4|4) is an eight-dimensional supermatrix lying
in the supergroup OSp(4|4), i.e. the maximal group manifold compatible with the internal
symmetries of the problem [12]. Generalizing to slowly fluctuating rotations, we obtain the
matrix field

Q(x) ≡ T (x)σ AR
3 T −1(x) ∈ OSp(4|4)/OSp(2|2) × OSp(2|2) (44)

as the central degree of freedom of the theory.
The final step in the construction is to expand the action in slow fluctuations of the field

Q(x). The finite cost of these fluctuations is due to (a) their spatial variation and (b) the
presence of the so-far neglected frequency mismatch, �. Fortunately, the job of actually
determining the resulting contributions to the action has been done before [12]. All we need
to do is carefully identify the parameters of the present problem with those of its electronic
analogue; the algebraic structure of the two problems is almost identical. Indeed, substituting
the ‘soft’ configurations R = q1 + iq2Q into the action (39), we obtain

S[Q] = str ln

[
J

2
� + q1 + iq2Q +

�

2ω
σAR

3 (q1 + iq2Q)

]
. (45)

It is useful to relate this expression to the action of the fermionic problem (see [12])

Sf [Q] = str ln

(
1

2m
� + EF +

i

2τ
Q + �σ AR

3

)
. (46)

Comparison of the two actions leads to the list of identifications summarized in table 1 below.
From (46), an effective low energy action

Sf
eff[Q] = πν

8

∫
ddr str

(
D0∂Q∂Q + 2i�Qσ AR

3

)
. (47)

can be derived by leading-order expansion in the parameters �τ � 1 and l/L � 1, where L
is representative of the length scales we wish to probe. Equation (47) contains the bare values
of DoS, ν, and diffusion constant, D0, of the fermionic problem. These quantities are related
to the parameters of the prototypical action, equation (46) as also summarized in the table 1.
Details of the derivation can be found in [12].

Quite analogously, starting from the action equation (45), the effective low energy action
of the magnon problem can be obtained as

Seff[Q] =
∫

ddr str

(
π(d)

(2π)d

q
d
2

1

8q2

(
2

J

) d−2
2

∂Q∂Q + +i
q1q2

αω3
�Qσ AR

3

)
. (48)

We next proceed to discuss what can be learned from this representation of the problem. The
first quantity we would like to calculate is the magnon density of states ρ(ω). This can be
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extracted from the correlation function C1 with the help of equation (32) using the relations
(41) and (43). The result is

ρ(ω) = 4q1q2

παω3
. (49)

Using equation (49), we rewrite equation (48) in a form similar to the effective action of the
fermion problem, equation (47):

Seff = πρ(ω)

8

∫
ddr

[
D(ω)∂Q∂Q + 2i�QσAR

3

]
, (50)

Here D(ω) is the diffusion constant of magnons at frequency ω,

D(ω) = π(d)

(2π)d

(
2q1

J

) d−2
2 αω3

4q2
2

. (51)

Finally, the product ρ(ω)D(ω), relevant for the calculation of the thermal conductivity
(cf equation (34) reads as

ρ(ω)D(ω) = (d)

(2π)d

q
d
2

1

q2

(
2

J

) d−2
2

. (52)

Calculating the correlation function C2 using equation (42), we indeed reproduce the
expression equation (33).

Finally, we note that the dispersion relation of magnons is given by the poles of the Green
function G(ω, p) and can be extracted from

J

2
p2 = q1 + iq2. (53)

Since the functional form of the mean field parameters q1,2 depends on the dimensionality
of space, we next consider the cases d = 1, 2, 3 separately.

4. Results

4.1. 1d case

Strictly one-dimensional Mattis glasses are amenable to transfer matrix techniques and have
been discussed before us [3]. Nevertheless we would like to try to analyse them here using
the techniques proposed in this paper. Our conclusion, however, is going to be that, as always
for strictly one-dimensional problems, the sigma model description breaks down.

In d = 1, the momentum integral appearing in the saddle point equation (43) can readily
be done and we obtain

R̄ =
(

α2ω4

2J

)1/3

cos(π/3)
(
1 + i tan(π/3)σ AR

3

)
. (54)

Substitution of this result into (49) leads to an SCBA DoS

ρ(ω) = − 1

π
Im(C1(ω)) ∼ ω−1/3, (55)

divergent at small frequencies. Equation (55) in fact coincides with the exact expression for
the density of states obtained in [3] by the transfer matrix formalism. A direct application
of SCBA to the 1D Mattis glass was attempted even earlier, in [8]. However, from a purist’s
point of view, the result does not seem quite trustworthy. A glance at (54) shows that the real
(q1) and the imaginary (q2) part of the SCBA self-energy are actually of the same order. On
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the other hand, the SCBA as such is stabilized by the smallness of the parameter q2/q1. Put
differently, in a one-dimensional environment the SCBA, and for that matter the construction
of our low energy field theory, are ill-founded. For this reason, we are not going to discuss the
case d = 1 any further and turn to d = 2 instead.

4.2. 2d case

In d = 2, the saddle point equation (43) takes the form

R̄ = αω2

(2π)2

∫
d2p

J
2 p2 − R̄

. (56)

Cutting the logarithmic divergence of this integral by introducing a momentum cutoff 
, we
obtain

R̄ = αω2

2πJ
log

(
−
2J

2R̄

)
.

To logarithmic accuracy, this equation is solved by R̄ = q1 + iq2σ
AR
3 , where

q1 = αω2

2πJ
log

(
π
2J 2

αω2

)
q2 = αω2

2J
.

Notice that we are now on safe ground inasmuch as

q1/q2 ∼ log

(
π
2J 2

αω2

)
� 1, (57)

or, in other words, as long as the frequency is small enough,

ω � 
J√
α

. (58)

Armed with q1 and q2 we can now calculate the DoS, the diffusion constant and the thermal
conductivity. With the help of equation (49) we find

ρ(ω) = αω

π2J 2
log

[
π
2J 2

αω2

]
. (59)

This indeed coincides with the density of states derived in [8]. Looking at the dispersion
relation equation (53) with the help of q2 � q1 we see that

Re ω =
√√√√ 4π

α log
(


2

p2

) J

2
p, Im ω =


 π

α
1
3 log

(

2

p2

)



3
2

J

2
p.

Next, the diffusion constant is given by

D(ω) = J 2

4αω
. (60)

This allows us to calculate the thermal conductivity by using equations (59), (60) and (34).
Quite remarkably, the integral in equation (34) is convergent at small frequency and we obtain
a closed formula for the magnon thermal conductivity in 2d

κ = k2T

12h̄
log

(

2J 2

αk2T 2

)
. (61)

As a consequence of equation (57), this formula works if the logarithm in it is large, or
T � 
J/k

√
α.
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Finally, we would like to calculate the localization length of phonons at frequency ω. To
do that, we evaluate the � = 0 effective field theory action equation (48) to find

Seff = 1

32π
log

(
πJ 2
2

αω2

)∫
ddr str ∂Q∂Q. (62)

In two dimensions, the supersymmetric σ -model is known [12] to flow to a disordered phase.
The magnon localization length is the length scale at which the corresponding RG group
equations renormalize the coupling constant of the effective field theory,

1

32π
log

[
π
2J 2

αω2

]
(63)

down to values of the order of 1. That gives (compare with [9])

l(ω) ∝ exp

{
1

32π
log

[
π
2J 2

αω2

]}
(64)

or

l(ω) ∝ ω− 1
16π . (65)

The localization length is divergent as a power law of the frequency. This is in contrast to the
behaviour of phonons in structural glasses [9] and, by extension, of magnons in Mattis glass
with nonzero overall magnetization. There the localization length diverges much faster with
decreasing frequency, as an exponential of the inverse frequency square. In other words, in
these systems, static disorder is less efficient as a scattering agent than in the Mattis glass with
vanishing magnetization.

4.3. 3d case

Conceptually, the analysis of the 3d cause parallels the discussion of the previous section. We
therefore restrict ourselves to a brief statement of the key formulae.

In analogy to the 2d case, we solve the mean field equations equation (43) to

q1 = αω2

π2J

, q2 =

√
α3ω6


2π4J 4
. (66)

At sufficiently small frequencies ω

q1/q2 ∝ J
√




ω
√

α
� 1, (67)

and the effective field theory approach works in this case as well. The DoS follows as

ρ(ω) = 8
(α
)

3
2

2
3
2 π5J 3

ω2, (68)

in agreement with the general mean field theory result above the critical dimension d > dc = 2.
The dispersion relation of magnons is

Re ω =
√

π2J 2

2α

p Im ω = π

4


√
π2J 2

2α

p2,

in agreement with the general result Re ω ∝ p, Im ω ∝ pd−1. The diffusion constant is given
by

D(ω) = π2

6
√

2

J 3

√

α

3
2 ω2

. (69)



9370 V Gurarie and A Altland

The thermal conductivity can be found with the help of equation (34) to give

κ = 


9π

k2T

h̄
. (70)

In 3d, the sigma model at weak bare coupling EF τ ∼ q1/q2 � 1 is known to flow to a
metallic phase where the conductance K ∼ κL is Ohmic. Accordingly, the heat conductance
of a sample of linear size L will be given by

K = 
L

9π

k2T

h̄
. (71)

Due to the condition, equation (67), the temperature has to satisfy

T � J

k

√



α
. (72)

4.4. Quasi-1d case

Quasi-1d systems are highly anisotropic such that the extension in one direction (the
‘longitudinal’ direction) is far in excess of the ‘transverse’ extensions. Here we will consider
such a three-dimensional ‘wire’ made of Mattis glass.

Let us denote the width of the wire, when measured in units of lattice spacings, N. Then
the actual width of the wire is given by N/
, where 
, as before, is the inverse lattice spacing.
N = 1 corresponds to the strictly one-dimensional problem, while here we will consider the
N � 1 case.

As a result of having finite N, the transverse momentum is quantized in units of (roughly)

/N . The saddle point equation (43) must now involve both integration over longitudinal
momentum and the summation over the transverse ones. Fortunately it is possible to go back
to three-dimensional integration if

q2 � J

(



N

)2

. (73)

Once the integration is three-dimensional, we can borrow q2 from equation (66) to find

J

√



α
� ωN

2
3 . (74)

This is the condition which the frequency and the number of channels must satisfy for the 3d
density of states be applicable to the quasi-1d geometry.

At the same time, for the formalism to work the frequency cannot be larger than J
√


/α,
due to equation (67). We see that as a result, the frequency must lie in the interval

1

N
2
3

� ω

J

√
α



� 1, (75)

which is always possible at large enough N.
Once the magnon frequency lies in the interval given by equation (75), the magnons are

described by the 3d sigma model derived in the previous subsection. However, for sufficiently
narrow wires and long times the diffusion of magnons becomes purely one-dimensional. For
that to happen, we need to take the frequency � to be much less then the inverse Thouless
time D(ω)/(N/
)2. In other words, using equation (69) we find

� � 

3
2 J 3

N2α
3
2 ω2

. (76)
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Our conclusion is that in the long quasi-1d wires the magnons whose frequencies satisfy
equation (75) diffuse and localize purely one-dimensionally for times longer than the inverse
� given in equation (76) above, even though their density of states and their diffusion constant
as a function of frequency ω are given by the 3d expressions (68) and (69).

5. Nonvanishing magnetization

5.1. Phonon–magnon crossover

It is also instructive to see how the magnons behave when the average magnetization is
nonvanishing M > 0. While the properties of very low frequency magnons coincide with those
of phonons in structural glasses discussed in [9], at somewhat higher frequencies the behaviour
crosses over to the one indistinguishable from that of the zero magnetization magnons. It is
this phenomenon that we would like to study in this section.

The starting point of the analysis is equation (28) with M > 0. It is fairly straightforward
to repeat the analysis of section 3 of the paper to find the following effective action, the
analogue of equation (45),

S[Q] = str ln

[
J

2
� + Mω + q1 + iq2Q +

�

2ω
σAR

3 (Mω + q1 + iq2Q)

]
. (77)

Accordingly, the self-consistent Born mean field equation (43) changes to

R̄ = αω2

(
1

2π

)d ∫
ddp

J
2 p2 − R̄ − Mω

. (78)

The solution of this equation has, as before, the form

R̄ = q1 + q2σ
AR. (79)

Finally, the structural form of Green functions and observables themselves changes.
Specifically, the Green functions now have the form

G± =
[
ω (V + M) +

J

2
� ± iε sign ω

]−1

(V + M). (80)

Comparison with the fermionic effective action equation (46) shows that the role of the
Fermi energy is now played by Mω + q1. Two distinct regimes can now be identified:
for M � q1(ω)/ω, the magnon properties are indistinguishable from those of Mattis glass
magnons in the absence of a magnetized background. In contrast, for M � q1(ω)/ω, the
magnons resemble phonons in structural glasses. As we shall see in a moment, at sufficiently
low frequencies, the second scenario is effectively realized.

To demonstrate how this works, let us solve the SCBA equation (equation (78)) at d = 2.
We find

q1 = αω2

2πJ
log

(

2J

2q1 + 2Mω

)
, q2 = αω2

2J
. (81)

If

αω2

2πJ
log

(

2J

2Mω

)
� Mω, (82)

the magnons are in the phonon regime. This will happen if

ω � JM

α
. (83)
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Conversely, at ω � JM/α, the magnons are effectively in the M = 0 regime studied in this
paper in the previous section. However, the condition q1 � q2 must also apply in order for
the formalism developed in this paper to work. This is equivalent to ω � 
J/

√
α. The

consistency condition is thus 
J/
√

α � JM/α or

M �
√


2α. (84)

The average magnetization M � 1, while 
2α > 1. We see that equation (84) always applies.
Analogously, at d = 3, we find that the magnetization M can be neglected if

ω � MJ

α

. (85)

Its consistency with q1 � q2 gives M �
√


3α.

5.2. The phonon regime

At small enough frequency, the magnons behave in a way reminiscent of phonons in structural
glasses. Even though most of the results for those were obtained in [9] we would like to
present some of them here, in part for completeness, and in part since there are still some
distinctions between phonons and magnons. This mostly stems from the fact that the basic
equation for phonons in glasses, while practically identical with equation (28), had ω2 in place
of ω.

The main feature simplifying the magnetized theory at small frequency is that M always
dominates the effective ‘Fermi’ energy. As a result, it is possible to neglect q1 in all the
calculations. The Green functions can be approximately calculated as

G± ≈ M

[
ω(V + M) +

J

2
� ± iε sign ω

]−1

. (86)

Because of this structure, the problem enjoys a complete analogy to the problem of disordered
fermions, and the results of the treatment of the latter can be directly translated into the
language of the former. This fact has already been successfully exploited in [9].

In particular, it is clear that the DoS will coincide with what we called ν in the previous
sections of the paper,

ρ(ω) = ν(ω) = 1

(2π)d

∫
ddpδ

(
J

2
p2 − Mω

)
= (d)

(2π)d

d

J

(
2Mω

J

) d−2
2

. (87)

This coincides with the spectrum of ferrimagnets [1, 4].
Concentrating on the case of two dimensions d = 2, we find that as before q2 = αω2/(2J ),

which leads to the diffusion constant

D(ω) ≡ D0(ω) = 2J 2M

αω
. (88)

The integral
∫

dω ρ(ω)D(ω) is logarithmically divergent, leading to the infinite thermal
conductivity of magnons at nonzero magnetization. A similar phenomenon is also observed
with phonons in structural glasses (although the degree of divergence is different there). The
physical consequence of this latter phenomenon is that in real magnets with nonvanishing
magnetization the thermal conductivity must be dominated by inelastic scattering processes
(completely neglected in this paper) rather than by elastic collisions.

We finally note that the dispersion relation can be deduced from Jp2/2 = Mω + iq2(ω).
In 2d this can be reduced to Im ω ∝ p4. Similarly, in 3dq2 ∝ ω

5
2 resulting in Im ω ∝ p5.

This confirms equation (10). Incidentally, equation (9) also follows from these considerations,
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but with the substitution ω → ω2. This follows from the fact that equation (28) basically
coincides with the equation of motion of phonons in disordered solids, discussed in [9], up to
this change of the definition of frequency.

The diffusion constant goes as D ≡ D0(ω) ∝ 1/ω3/2, leading to the same divergent
behaviour of D(ω)ρ(ω) ∝ 1/ω as in 2d.

6. Conclusions

In this paper we studied the spectral and transport properties of magnons in a Mattis glass with
vanishing average magnetization. We find that in 3d their motion is diffusive and that results
in finite thermal conductivity given by equation (70). In 2d the thermal conductance is also
finite and given by equation (61). This could be contrasted with the behaviour of phonons in
structural glasses (and with magnons in a Mattis glass with nonzero magnetization), whose
contribution to thermal conductance is infinite (when phonon–phonon scattering is neglected).

The prime motivation for applying the field theoretical formalism above to the Mattis
glass is that in the latter the two problems of identifying the ground states of the system
and quantifying the low-lying excitations superimposed on these ground states (the two
fundamental issues in understanding the behaviour of glassy systems) afford a clear separation.
What will happen in ‘real’ glasses? Although we are not in a position to say anything
quantitative, one may expect the excitations on top of the—now unknown—ground state(s)
to be governed by some quadratic bosonic Hamiltonian (cf equation (18).) Assuming this
Hamiltonian to be (a) positive, (b) local and (c) reflecting the presence of an underlying
Goldstone mode, significant elements of the present analysis are likely to remain valid. The
quantitative formulation of this analysis will be the subject of future research.
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Appendix

We would like to show that[
ωV +

J

2
� ± iεV

]−1

=
[
ωV +

J

2
� ± iε sign ω

]−1

(A.1)

in the limit when ε is small. Once this is shown, the expression for the Green function
equation (30) follows immediately.

The proof is based on the fact that − J
2 � is a positive definite operator. For simplicity,

let us first consider an analogue of equation (A.1) written for real numbers as opposed to
operators. Take

1

ωv − d ± ivε
, (A.2)

where v is a real number and d is a positive real number. Take ω > 0. Then if v is negative,
ωv − d is also negative, and ε can be completely neglected. If v is positive, the product vε
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can be replaced by ε, since we are interested in the limit ε → 0 in any case. In other words,
regardless of the sign of v,

1

ωv − d ± ivε
= 1

ωv − d ± iε
, ω > 0 (A.3)

as ε is taken to zero. For negative ω, the logic can be repeated to result in
1

ωv − d ± ivε
= 1

ωv − d ∓ iε
, ω < 0. (A.4)

These can be combined to give
1

ωv − d ± ivε
= 1

ωv − d ± iε sign ω
, (A.5)

at arbitrary sign of ω.
The operator generalization of equation (A.5) can be derived by similar reasoning: take

ω > 0 as in the text above. To show that equation (A.1) holds, we calculate matrix elements
of

G−1 ≡ ωV +
J

2
� ± iεV (A.6)

in the basis where ωV + J
2 � is diagonal. Denoting the eigenvalues of ωV + J

2 � as λa and the
eigenvalues of J

2 � as −µa (µa > 0), we find(
ωV +

J

2
� ± iεV

)
ab

= λaδab ± iε

ω

(
λaδab + UacµcU

†
cb

)
, (A.7)

where the matrix elements of J
2 � in the reference basis are written as −UacµcU

†
cb, U is some

unitary matrix and summation over the index c is implied. In what follows, it is crucial that
UacµcU

†
ca > 0, or in other words, that the diagonal entries of a positive matrix have to be

positive.
The eigenvalues λa are generally nonzero. As we tune the parameter ω, the eigenvalues

λa can go through zero one at a time. If all of λa are nonzero, ε can be taken to zero directly
in equation (A.7), and we obtain

Gab = δab

λa

. (A.8)

If one of λa is zero, more care is needed. The off-diagonal matrix elements of G can be found
as the ratio of the appropriate minors of G−1

ab to the determinant of G−1
ab . It is easy to see that

the determinant of G−1
ab is of the order of ε, while the minors are at least of the order of ε

as well (or they could be of higher order in ε). As a result, the off-diagonal matrix elements
of Gab are either constant as ε goes to zero, or vanishing. However, being a constant for
a particular value of ω (for which one of the eigenvalues λa vanished) and zero at all other
values of ω is tantamount to being zero (as in limε→0 iε/(λ + iε) = 0 as a function of λ).

As far as the diagonal matrix elements of G are concerned, they are also given by the ratio
of the minors to the determinant of G−1. The main contribution to both in the limit ε → 0
is the product of the appropriate diagonal elements of G−1. It is easy to see that in that limit
the matrix elements of Gaa are equal to 1/λa except when λa = 0. For that one vanishing
eigenvalue,

Gaa = ω

iε
(
UacµcU

†
ca

) .

Since UacµcU
†
ca > 0, and ω > 0, and since ε is taken to zero, we can replace this by

Gaa = 1

iε
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in that limit. So indeed, the coefficient in front of ε can simply be put to 1 from the very
beginning, as in equation (A.1) for ω > 0.

Repeating the same argument for ω < 0, we arrive at equation (A.1) for arbitrary sign
of ω.
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